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Abstract. The calculation of Kronecker products and plethysms of the infinite-dimensional
harmonic series unitary irreducible representations of the non-compact gi@e, i) is
considered. The complementarity § (2n, &) and O (k) is used to define associate irreducible
representations dfp(2n, i). This leads to simple relationships between Kronecker products and
plethysms of irreducible representationsSgf(2n, i) and those of their corresponding associate
irreducible representations. In the process of proving the validity of these previously conjectured
relationships several new identities are found for plethysms involving infinite series of Schur
functions. In addition, a general formula for plethysms of arbitrary irreducible representations of
Sp(2n, N) is derived and its implementation is illustrated with a detailed example. A remarkable
analogy is then observed between plethysms of the basic harmonic irreducible representations
of Sp(2n, N) and those of the basic spin irreducible representationsof2n).

1. Introduction

The symplectic grougp(6, i) is well known as the dynamical group for a single particle

in an isotropic three-dimensional harmonic oscillator potential [1]. Femon-interacting
particles in an isotropic three-dimensional harmonic oscillator potential the group of interest
[2-6] is Sp(6N, NR). In general, the grougp(2n, N) is of relevance to symplectic models

of nuclei [4] and certain mesoscopic systems such as quantum dots [5, 6]. The irreducible
representations ofp(2n, 9) of interest in these problems are the infinite-dimensional
harmonic series unitary irreducible representations [7]. Methods of calculating their tensor
or Kronecker products in terms of infinite series of Schur functions [8, 9] (S-functions) have
been developed earlier [2, 3]. The corresponding problem of resolving symmetrized powers
or plethysms of the irreducible representations has also been tackled through the use of
infinite series of Schur functions [10-15]. It has been observed that explicit calculations
[16] of such plethysms seemed to imply some hitherto unnoticed conjugacy relationships
[14,15]. The wish to prove these conjugacy relationships was the principal motivation
for developing the content of this paper. Central to their derivation is the use of the
complementarity ofSp(2n, ®) and O (k) which is used to define associate irreducible
representations ofp(2n, N). It is this that leads to the required conjugacy relationships
between both Kronecker products and plethysms of irreducible representations and their
associates irfp(2n, %). In the process of proving the most general possible form of these
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conjugacy relationships it has been necessary to establish a number of new identities and
lemmas relating to plethysms involving infinite series of Schur functions. In addition, a
general formula for the evaluation of plethysms of arbitrary harmonic series irreducible
representations ofp(2n, %) is derived and illustrated with a detailed example. Finally,
detailed consideration is given to the very striking analogy between basic spin irreducible
representations df O (2n) and the basic harmonic irreducible representationsp@®n, ).

This leads to a simplification of earlier analyses [17] of the symmetrized squares and cubes
of the basic harmonic irreducible representationSmf2n, ). The results obtained in this
paper represent a further step towards the practical implementation of symplectic models of
many-particle systems.

2. Harmonic series unitary irreducible representations of Sp(2n, R)

Following the terminology and notation of an earlier paper [3], the harmonic series unitary
irreducible representations [7] ofp(2n, i) are specified by symbol$%k(/\)), where
A = (A1, A2, ...) is a partition for which the conjugate partitiorh = (17, 15, ...) is such
that 2] + 2, < k and 1] < n. The relationship between a partition and its conjugate is
such that the parts of and A’ specify the row and column lengths, respectively, of the
corresponding Young diagrai. If X is a partition ofm then the total number of boxes in
F* is m, which is sometimes referred to as theight of ». By the same token the number
of boxes,A], in the first column ofF* and the numbera4, in the first row are referred to
as thelength andwidth, respectively, ofi.

The two basic harmonic series irreducible representations may be denoted by
Ay = (3(0)) andA_ = (3(1)). Their direct sum

A=A +A_=30)+EQD) (2.1)

is the restriction taSp(2n, M) of the defining irreducible representation of the metaplectic
group Mp(2n, ), the two-sheeted covering group of the symplectic growg2n, i).
As a representation afp(2n, i) the basic harmonic or metaplectic representatioris
an example of the unitary ray representations introduced for all Lie groups by Bargmann
[18]. More precisely it is the infinite-dimensional double-valued projective representation
of Sp(2n, N) studied in the mathematics literature by Segal [19], Shale [20] and Weil [21],
and independently in the physics literature by Moshinsky and Quesne [22]. The connection
with the metaplectic group/p(2n, i) is made by Weil [21], while both Shale [20] and
Moshinsky and Quesne [22] point out that the metaplectic representatisrthe analogue
for Sp(2n, N) of the basic spin representation @{27). The wider class of harmonic series
irreducible representations studied here were first introduced by Kashiwara and Vergne [7]
as new unitary representations of the metaplectic gréfyg2,, %) arising as irreducible
components of tensor powers Af

It is convenient to gather together some known facts about these harmonic series
irreducible representations: their behaviour on restriction fgni2n, i) to the maximal
compact subgrougd/(n); the decomposition of their tensor products; the relationship
between their symmetrized products and the branching rule for the restrictiah(of
to the symmetric groug;.

All of these facts can be deduced by exploiting the fact that the pair of groups
Sp(2n, R) and O (k) are a dual pair with respect tp(2nk, R) in the sense of Howe
[23] or, equivalently, a complementary pair of subgroupsSpf2nk, i) in the sense of
Moshinsky and Quesne [22]. This duality or complementarity is such that on restriction
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from Sp(2nk, N) to Sp(2n, N) x O (k) we have the branching rule:

A — Y (3k() x [A] (2.2)
A
where the summation is over all thosesuch that
M A, <k and A <. (2.3)
Under restriction fromSp(2n, R) to its maximal compact subgroup(n) we have [2, 3]
(3k()) — > 2R u), (2.4)
"

where the summation is over all thogesuch that
uy < min(k, n) (2.5)

ande = {1"} is the one-dimensional irreducible representatiol/6f) in which each group
element is mapped to its determinant. The coeffici®{tsare defined by the branching rule
for the restriction fromU (k) to O (k):

() = Y RITAL. (2.6)
A

The particular significance of (2.4) is not just that it defines the decomposition of
the restriction of the irreducible representatioglk(k)) of Sp(2n, M) into irreducible
representations of/ (n), but that it serves to define completely the charactet%dtf(k))
since Sp(2n, N) and U (n) are of the same ranly. Furthermore, since every harmonic
series representation obtained by taking some arbitrary linear combination of products of
the unitary irreducible representatiot%‘k(k)) is itself unitary, it is fully reducible and its
irreducible content is completely determined by its character. Since this may be evaluated
at the level ofU (n), as on the right-hand side of (2.4), identities between characters at the
level of U (n) imply corresponding identities, up to equivalence, between representations at
the level of Sp(2n, N). This is exploited in what follows.

In order to evaluate explicitly the branching rule coefficients in (2.6) it is convenient to
note that it can be expressed in the form [24]

{u} = [n/D] 2.7)
where
D=) {8} ={0}+ {2+ 4+ {2+ (2.8)
8
in which the summation is over all partitiodshaving just even parts, andsignifies an

S-function quotient. This can then be used [2, 3] to rewrite the branching rule (2.4) in the
form

(3k(0) — &2 (1) - D (2.9)
where{A,}* is the signed sequence [2, 3]
Pl = niw) (2.10)
y

with the summation extending over all with u} < k such that ft] = nﬁ[k] under the
modification rules [24] ofO (k). The non-vanishing coefficientg‘, are all£1. The symbol

- in (2.8) signifies anS-function product corresponding precisely to a tensor or Kronecker
product inU (n). For givenn it is only necessary to retain those terfng in the products
(2.8) for whichv; < n.
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It should be noted that in the cake= 1 the restriction fromSp(2n, i) to U (n) is such
that the basic harmonic irreducible representations decompose in accordance with the rules

Ar = (2(0) - M, (2.1%a)

A= (3(D) > e°M_ (2.11b)
where

My= 3 (m}={0b+ {2+ {4+ (212)

M_ = mde{m} =L+ {38 +{(B+-. (2.1)

It has been shown [2] that the tensor product of a pair of unitary harmonic series
irreducible representations 6p(2n, i) decomposes in accordance with the rule

(3k(w) x (3e)) =Y K3k + 0)(0)) (2.13)
A

where the coefficient&}" are the branching rule coefficients appropriate to the restriction
Ok +£) — O(k) x O(L):

[ = D KL Tud x [v]. (2.14)

iy

In general, it is not so straightforward to decompose symmetrized powers or plethysms
of irreducible representations 6p(2n, i). Let p be a partition ofk. Then in the case of
the metaplectic representatian its corresponding-fold symmetrized power decomposes
in accordance with the rule [10, 11]

A®{p) =) by(zk() (2.15)
A

where the coefficientbz are the branching rule coefficients appropriate to the restriction
o (k) — S;

[} = D b(0) (2.16)

P

where here the summation is carried out over all partitiora$ k. The coefficientsbj) may
be found by noting that [25]

Al > k-1, ®{\/G} (2.17)
where

G =) (-1

= {0} + {1} — {21} — (2} + (312} + {321} — - - (2.18)

in which the summation is over all self-conjugate partitiensith ¢ equal to the weight of
€ andr equal to its Frobenius rank, that is the number of boxes on the main diagonal of
the corresponding Young diagraff.
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3. Associate irreducible representations ofSp(2n, R)

It is well known [8, 24] that corresponding to each irreducible representatipof|the
full orthogonal groupO (k) there exists an associate irreducible representatiph [The
relationship between these irreducible representations is such tht:ifA[— [A](A) for
each group element of O (k), then R]* : A > [A]*(A) = detA-[1](A). Since ded = £1
for all A € O(k), it follows that ([A]*)* = [A].

In terms of the partitions used to label irreducible representationy by, if the partition
X labelling [A] has conjugate’ = (1], A5, A3, ...) then the partitiork* labelling [A]*, which
is referred to as thk-associate ok, has conjugate™ = (k — 17, 15, A5, ...). Equivalently,
the k-associate.* of the partitionx is defined by the Young diagra" obtained from the
Young diagramF* by taking the complement of the first column with respect to a column
of lengthk.

It should be noted that for each irreducible representatipof] O (k) the corresponding
partition i is O (k)-standard in the sense thet+ A5 < k. This is precisely what is required
to guarantee that— A7 > A/, so thatA* is a partition. Similarly the fact that is a partition
guarantees that; > A} so that\*] +1*, = k— 1]+, < k. Thusr* is alsoO (k)-standard.

As a special case of the above it should be noted that the associate of the identity
irreducible representation [0] is just the irreducible representationJL*] in which each
group elementd of O(k) is mapped to its determinant. More generally

[A" = 2] =[] - [0]" = [A] - [1°]. 3.1

Returning toSp(2n, ), it is natural thanks to (2.2) to associate with each irreducible
representatior{%k(x)) of Sp(2n, N) an associate irreducible representat{ék(x))*. The
complementarity betweesp (2n, %) and O (k) embodied in (2.2) then leads to the following
definition.

Definition 3.1.For allk < n the associaté1k(1))* of the irreducible representatidgk(2.))
of Sp(2n, N) is defined by

(3kO))* = (3k(0")) 32
where)* is the k-associate of..

As a special case of this with= 1 it is clear that
(A" = (300)" = (3()) = A_ (3.39)
(A" = (3()" = (;00) = A.. (3-%)
With this notation and terminology it is not difficult to establish the following.

Proposition 3.2. If under the restriction fromSp(2n, %) — U(n) each irreducible
representatiorﬁ%k(k)) decomposes in such a way that

(3k() — Y e?Ri (3.4)
"

then fork < n the associate irreducible representat{éia(k)*) decomposes in accordance
with the rule

(kO — Y 2R {u}/(1h) (3.5)
"

where/ signifies anS-function quotient.
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Proof. In (3.4) it should be noted thak, is defined by theU(k) — O(k) branching
rule (2.6). However, inU(k) for all v such thatv; < k we have{v} - {15} = {u} with
wy =k where F* is obtained fromF” by adding a leftmost column of length Under the
restriction fromU (k) to O(k) we have

)=} {1 = DRI [1] =D RIx*1 =D RLL[AL (3.6)

It then follows by comparison with (2.6) that

R). =R/ where{u} = {v} - {1¥} and {v} = {u}/{1*}. (3.7)
Hence, under restriction frorfip(2n, iN) to U (n), provided that: > k, we have
(GK))* = (3kG) — Y PR = ) 2RI /ALY)

vy <k wipy=k
> PR/ (3.8)

wipy <k

where the last step follows from the fact tHat}/{1*} = O if 1) < k. This completes the
proof. O

The consistency of proposition 3.2 with what we know of the branching rules (2.10)
of the basic harmonic irreducible representations is easy to verify. In this case we have
k = 1 and as we have seeh. — ¢¥Y2M_. It then follows from proposition 3.2 that
(Ap)* — eY2M_/{1} = e¥/2M_. as can be seen from (2. 11) smpe}/{l} {m — 1} for
m > 0 and{0}/{1} = 0. This is in accord with (2.10) sincd@\+)* = A; — &/?M-.

4. Tensor products of harmonic series irreducible representations o8p(2n, R) and
their associates

As in the previous section it is straightforward to exploit definition 3.1 andSih@n, i)
tensor product rule (2.10) to establish the following.

Proposition 4.1.

(k)Y X (3LM))* = (3k()) x (3L (4.1)
where on the left-hand side the symbelmdicatek- andZ-associates, and on the right-hand
side (k + ¢)-associates.

Proof. It should first be noted that under the restriction frang + £) to O (k) x O(£) we
have in the notation of (2.11) and (3.1)
A =[] = D K] x [v]. (4.2)

v

However, (2.11) and (3.1) also imply
=[] - [T = DK@l x D - (] x [0 =Y KL ([l - [1°D) < (V] - [2D

= > K] x ] =Y K ] x [v] (4.3)

where in the first step advantage has been taken of the fact tHaj(4) = detA = detB
detC = [1¥](B)[1¢](C) forany A = B x C in O (k) x O(¥).
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Comparing (4.2) and (4.3), we have
K =K. (4.4)
It then follows that
(3k(0) X (30))" = (3k(u") x (3E0v") = DKL (G k +0)(3))

A

=Y KX Gh+00W) =) K Gh+005) =Y K" Gk +O0)
A

A A
= ((2k(w) x (3E))* (4.5)
as required. |

5. Symmetrized powers of the basic harmonic irreducible representations of
Sp(2n, R)

First of all it should be pointed out that for the harmonic or metaplectic representation
of Sp(2n, M) we have the following.

Proposition 5.1.The k-fold symmetrized powers ok are such that

A®o) =A®c’ (5.1)
for each patrtitioro of k.
Proof. In the notation of (2.15), the branching rule for the restriction froxt) to S; is

such that

[A] — Zb’r\(t) and L] — Zbg* (0). (5.2)

However,
D1 =01 =] 0= [A]- [0 = Y bie- @) =) bia) =D bho).  (5.3)

Comparing (5.2) and (5.3) gives
by =b.. (5.4)
Using this and (2.14) we then have
Ao’ =) bL(3k0)) =D b (3k()) =D br(3k(W*))
A

A A

=) bL(3k) = (A®o) (5.5)
A
as required. O

This result (5.1) for the metaplectic representatiormay be refined so as to provide
information on the symmetrized powers of the basic harmonic irreducible representations
Ay. It has been conjectured [14,15] on the basis of extensive calculations of such
symmetrized powers [16] that:

Proposition 5.2. The symmetrizedk-fold powers of the basic harmonic irreducible
representationa . of Sp(2n, N) are such that

(AL ®{ph)* = A+ ® {0’} (5.6)
for each partitiono of k.
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In order to prove this result it is helpful first to establish two lemmas. First of all
we need a generalization of Littlewood’s conjugacy formula [26] which states that for any
partitiono of k we have

(619 (o) {0} ® {p} if k is even 5.7)
o} ®{p)) = .
(6"} ® {0} if k is odd.

The requisite generalization of (5.7) takes the following form.

Lemma 5.3Let S be an arbitrary representation &f(n) of the form

=) (o) (5.8)

where repetitions are allowed but each summénghas the same fixed paritys in the
sense that i is a partition ofk thenk = gy (mod 2 with ns fixed to be either 0 or 1.
Then
S'® {p} if ns=0
S®{p)) = { S _ (5.9)
S'® {p'} if ng=1

where S’ is obtained fromS by conjugating each summand.

Proof. The result is valid by virtue of Littlewood’s conjugacy formula (5.7)Sithas one
summand{c}. We assume that it is valid for all with one fewer summand, sdy}, than
S. Writing S = T + {0} we then have

(S@{p)) = (T +{o) ® (o))
= (Zc{jﬂ ® {uh (o} ® {u}))
Y

=Y (T ® ) (o) ® )

7Y

D e, (T @ uh (o'} ® (v} if nr =0

Y

e (Te{whioy @) ifpr=1
Y

b (T @ () (o'} ® (v]) if ny =0

v

Yoo el =1
74%

[T+t h @ leh if ny =0
(T"+{oH ') if np =1
(8" ®{p}h if s =0

- _ (5.10)
" ®@{ph) if ns =1

where use has been made of the fact that= nr. The coefficientscs,, are just the
Littlewood-Richardson coefficients [8, 9] determined by the tensor product rulg oy,

- wy=> ch i} (5.11)
P
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which satisfy the conjugacy relation
o

Cury = Chry- (5.12)
This completes the inductive proof of lemma 5.3. |
Our second lemma takes the following form:
Lemma 5.4 For each partitiorp of k
(M ® {p)/{1"}) = Mz ® {p'}. (5.13)

Proof. The branching rule for the restriction frobi(n) to U(1) x U(n — 1) takes the form
M1

() = D2 uh/la) (5.14)
a=0

where it has been convenient to denote the chardtjeof U (1) simply by z, and{a} by
z%. In the special casgu} = {1} this gives

1
1" — 21" ey = (1) + 2171, (5.15)
a=0
Taking thek-fold symmetrized power specified by a partitiorof £ gives

k
1" 1o}~ Y (1"} ® (p)/{b}
b=0

= (1"} +z{1"Y) ® {p). (5.16)
Equating the coefficients of the termsih gives
(1"} ® {ph/tk} = (1" ® {p). (5.17)
Applying Littlewood’s conjugacy formula (5.7) to both sides of (5.17) gives
(m} @ {oD/ {1} ={m -1 ®@{0}. (5.18)
All this can be generalized. If we s@. = M/, so that
0r= > (1" ={0}+ {1 +{1+ - (5.1%)
0-= > (1" =1+ {2+ 2%+ (5.1%)
m:m odd
then under the restrictioti (n) - U(1) x U(n — 1)
1
Qs — Y 70:/{a} = 0x + 20+ (5.20)
a=0
and hence
k
0+ ®{p} = D 2"(Qx ® {p)/{b} = (Q+ +20%)) ® {p}. (5.21)
b=0

Once again equating the coefficients of the terms‘igives

(Q+ ® {p)/tk} = {Q+ ® {p}. (5.22)

Our required result (5.13) then follows from our conjugacy lemma 5.3 since the terms of
Q. are of parityny, = 0 and those ofD_ are of paritynpy = 1, while 9/, = M,.. O
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Armed with lemma 5.4 we are now in a position to prove proposition 5.2.

Proof of Proposition 5.2For any partitiono of & all the irreducible representations in the
k-fold symmetrized poweA. ® {p} are of the form(%k(x)). It then follows from (2.10),
proposition 3.2 and lemma 5.4 that

A+ ® {p)* — ((Y?M2) ® {p) /(1) = "2 (Mx ® (PN /(1) = €2(Mz @ {p'}). (5.23)
Comparing this with

Ay @{p'} > (V2M3) @ {p'} = &AMz ® {p'}) (5.24)
suffices to prove (5.6). O

Remarkably, as indicated through the calculation of numerous examples [16].
Proposition 5.2, may be generalized to give the following.

Proposition 5.5.For any partitionp of r, the corresponding-fold symmetrized power of
the associate irreducible representat(ék(/\))* of Sp(2n, N) is such that

(3k() ® {p))* if k is even
Gk ® (ot =1 | o (5.25)
((3k) ® {p' D" if k is odd

where the* on the left signifies &-associate, while those on the right signtfy-associates.
To prove this proposition the first task is to generalize lemma 5.4.

Lemma 5.6 Let S be an arbitrary representation &f(n) of the form
S= > {o} (5.26)
o:0y<k
where repetitions are allowed but each summé&n§l has the same fixed paritys and
o; < k. Then for each partitiop of r

(S ® {phH/{1*} if k is even
(S/{1'hH ® {p} = [ o o (5.27)
S®{phH/{1"} if k is odd.

Proof. Let {«} be an irreducible representation Bfn) with 1 < k and i a partition of
m. Then taking ther-fold symmetrized power ofu} specified byp and restricting from
Umn)toUQ) x U(m —1) as in (5.14) gives

kr k
> A @ (ph/{b) = (Zz“{u}/{a}> ® {p}. (5.28)
b=0 a=0
Comparing terms in*" on both sides of this equation gives the identity
({u}/{k}) @ {p} = () @ {p})/{kr}. (5.29)
Taking the conjugate of the left-hand side gives
(31D @ (o} if m —k is even

((r}/{kh & {p}) = { . _ _ (5.30)
(u3AH @ {p} if m —k is odd
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while the conjugate of the right-hand side gives

('} ® {p)/{1"} if m is even
(@ {ph/tkr)) = ) o (5.31)
('} ® {p'H/{1} if m is odd.
Comparing (5.30) and (5.31) and settisig= ' gives the conjugate of (5.29), namely
(o} ® {p}) /(1) if k is even
{0}/ @ {p} = . . (5.32)
({o} @ {p'H/{1"} if k is odd.

It should be recalled that this only appliesoif = 1 < k. However, by hypothesis all the
summandgo} of S in (5.26) are of this type. Moreover, all the summands are of the same
parity ns. This allows us to replacéu} = {¢’} by S’ in both (5.28) and (5.29) to give

kr k
Y LS @)/ (b) = (Zz“S//{a}) ® {p) (5.33)
b=0 a=0
and
(S'/1kD) ® {p} = (' ® {ph)/{hr}. (5.34)

SettingT = §’/{k} so thatyy = ns if k is even and);y = 1—ny if k is odd, it then follows
from lemma 5.3 that taking the conjugate of the left-hand side of (5.34) gives

, Co (Y ety far=0
(S'/{kD) ® {p)) = . , _ (5.35)
S/ ® {p'} if nr = 1.
Similarly from lemma 5.3 taking the conjugate of the right-hand side of (5.34) gives
, C[Sep/iy ifns=0
(S @ {ph/{kr}) = R _ (5.36)
S ®{pH/{1"} if ns = 1.
Comparing (5.35) and (5.36) gives the conjugate of (5.34), namely
(S ® {p})/{1} if k is even
(SHY @ {p} = . L (5.37)
S®{p'hH/{1"} if k is odd
as required in order to prove lemma 5.6. O

This now allows us to prove proposition 5.5.

Proof. First of all, under the restrictio§p(2n, %) — U(n) we have from (2.4)

(3k()) — > PRI {u) = €28 (5.38)
"

with S as in lemma 5.6. It follows that
(3k) ® {p} = (£"28) ® {p} = "5 ® {p}. (5.39)

Taking the k-associate of (5.38) and using proposition 3.2 then gives under the same
restriction fromSp(2n, R) — U(n)

(3k0)" — D e 2RI u) /1) = &35 /{14 (5.40)
"
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Taking ther-fold symmetrized product of (5.40) specified by the partitiprand using
lemma 5.6 then gives

, eF2(8 @ {p}) /{1¥} if k is even
(KW ® (o} = S/ D ok =1 . . (5.41)
(S @ (') /{1 if kis odd.
On the other hand, taking the--associate of (5.39) and using proposition 3.2 gives
((3k(0) ® {ph* — "/2(S @ {ph /{1"}. (5.42)
Replacingp by p’ then gives
(3k()) ® (p'D* — e"2(S @ {p'D /{1 ). (5.43)
Hence, comparing (5.41) with (5.42) and (5.43) it follows that
(3k) ® {p)* if k is even
(k) ® (o) =1 ° o (5.44)
((3k) @ {p' D" if k is odd
as required. O

6. Symmetrized powers of arbitrary harmonic series irreducible representations of
Sp(2n, R)

It is possible to exploit the remarks following (2.6) and the branching rule (2.9) from
Sp(2n, N) to U(n) to derive the following general formula for symmetrized powers or
plethysms of arbitrary harmonic series irreducible representatio§p @, ).

Proposition 6.1.Let the partitioni be such thak] + A, < k andA} < n and letp be an
arbitrary partition ofr, then
(3k(0) ® {p} = Zxxp Shr () (6.1)

where the summation is over aII partitiopssatisfying the constraintg’ + u), < kr and
wy < n, and the coefficientsfp are determined by the expansion

(Y- DY@ - C = xi {us)" (6.2)
w
with C = D1,

Proof. Under the restriction fronSp(2n, i) to U (n) the branching rule (2.9) takes the form
(3k(1)) — &2 ()t - D. (6.3)

Hence, for each partitiop of r, the corresponding-fold symmetrized power of this
irreducible representation decomposes in accordance with the formula

(3k(1) ® {p} > (€2 {1} D) ® ()
= "2 (1) - DY@ (o)
= 2 () -D)® ) - DD
2 () - D)Y@ {ph - DY - D. (6.4)
However, in the notation of (6.2), it follows once again from the branching rule (2.9) that

(3k(1) ® (p) = Zx (3kr () »sW(Zx {1} >~D. (6.5)
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Comparison of (6.4) and (6.5) then completes the proof since, as noted following (2.6),
identities at the level of theit/(n) content are sufficient to imply identities between
representations afp(2n, ). O

In making use of the formula (6.2) to evaluate the plethysm coefficients in (6.1) it is
possible to make one or two simplifications. While the product of the signed sequence and
D-series appearing in the branching rule (2.9) is a product of two infinite series, all surviving
terms {v} in the product willautomatically be such thawv; < k. Since the products are
carried out inU(n) all the surviving terms are alsautomatically such thatv; < n. It
follows that (2.9) is equivalent to [3]

(3k() — 2 (A - Dvw (6.6)

where N = min(n, k), with the various series and products all being evaluatet! (V).
In precisely the same way, the plethysm and subsequent productCwiith(6.2) may be
evaluated inU (M) whereM = min(kr, n) so that (6.2) may be replaced by

(¥l - DV @ oD - Coor = D xii (sl (6.7)
"

Finally, it should be noted that in order to read off the required plethysm coefficients from
the expansion (6.7) it is only necessary to look at the leading fgrinin each signed
sequenceu,}¥, since it is only the leading term of each signed sequence which satisfies
the requiredO (kr)-standardness conditiqu + w5 < kr.

We illustrate the diverse features of such calculations by the evaluation of the plethysm
(2(21)) ® {21} for Sp(24, %) as an explicit expansion in terms of irreducible representations
of the form (6(w)) with the partitionu restricted, for convenience, to have weigtit8 and
width <3. Here we havé = 4 andn = 12 so thatV = min(k, n) = 4. Hence the signed
sequence, evaluated using the modification rule® ¢f), but restricted to terms standard
in U(4), has just the two terms

{213 = (21} — (2°1) (6.8)

both of which have width<3. The terms in theD-series restricted to widtki3 and length
<4 are

{0} + {2} + {2} + {22} + {2). (6.9)
Evaluation, inU (4), of the tensor product of (6.8) with (6.9) yields the terms of widhas
A = ({21} + {221} + {31%) + {32} + {321} + {32} + (3?1} + {3%21}. (6.10)

The plethysm ofA ® {21} is now to be evaluated in the group(12) sincek =4,r =3

andrn = 12 so thatM = min(kr,n) = 12. Keeping all terms of widtk{3 and of weight

<18 gives

(241} + (2*2%) + 2{2%1) + {2513} + 2{2%1) + {271} + {321%} + 2{32°1?} + 3{32%1%
+{32°} + 9{32°1%} 4 5{32°1%} + 6{32"} + 15{(32*1%} + 4{32*1%} + 10{32}
+11{32%1%} + {32°1%) + 7{32) + 3({32°1%} + 2(32"} + {321%} 4 2(3°1%}
+3(3%21) + 12(3%213} + 7{3%21%) + 18(32221} + 33(3%221%} 4 9(322215}
+45(3%2%1) + 40{322%1%) + 5(322%15) 4 54{322*1} + 23(322*1%}
+31{32251} 4 12(3%1%} + 20(3%1%) + 5(3%1%) + 10{3%2) + 60(3°21%)
+51{3321% + 7{3221°) + 40(3%22} + 117(3°2%1%} + 51{3%2%1%} + 7143%2%)
+112(3%2%1%) 4 67(3%2% + 32(3*1} + 70{3*1%} + 31{3*1°} + 120(3*21)
+137(3%21%) + 181{3%2%1} + 28(3°} + 116{3°1%} + 92(3°2}. (6.11)
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We now form the tensor product, iri(12), of the above terms with the following terms of
width <3 of the C-series:

{0} — {2} + {31} — (3?). (6.12)

Keeping only terms in the tensor product up to width 3 and weight 18 yields

(241} + {213} + {2°1) — {213} — {271} — {281} + {3214} 4 2{32%1%} 4 2{3221%} + {32%}
+6{32°12} + {32%1%) + 4{32%} + 4{32*1%) — {32*1%} + 3(32°) — 4{32°1?}
—2{32°1% — 3{328) — 6{32°1%} — 4{32"} + {3213} + {3%1%} + 3{3%21)
+8{3%21%) + 3(3221°%) + 12(32221} + 12{32221%} + 16{322%1} — 3{3%2%1%)
—12(3%2%13) — 16(3%2°1} + 8{3%12} + 8(3%1%} + 732} + 24({3%212}
+7{3%21% + 16(3%2%) + 16{3%221%) — 7{3%221%) + 9(3%2%) — 16(3°2%1%}
—9(3%2%) + 13(3*1} + 13(3*1%) + 25(3*21} + 6(3°} + 6{3°1%} + 6(3°2}.

(6.13)

The terms may now be grouped together into set®©¢f2) signed sequences. Thus, for
example{2*1,}13 = {21} — {281}. Alternatively, bearing in mind that for the purposes of
determining plethysm coefficients it is only necessary to retain the lead{ig)-standard
term in each such signed sequence, (6.13) may simply be restricted to thosetérfos
which ] 4+ ), < 12. The surviving terms are

(241} + {2°1%) + {2°1) + {321%) + 2{32%12%} + 2{32%1%} + {32°} + 6{32°1°%} + {32°1%)
+4{32%) + 4{32%12} + 3{32} + (3?13} + {321°) 4 3(3?21} + 8(3%213}
+3(3221%) + 12{3%2221} + 12(3%2%1%) + 16{322°1} + 8(3°1?} + 8(3%1%
+7{332} + 24({3%21%) + 7{3%21%} + 16(3%2%} + 16(3%2%1%} + 9(3323)
+13(3*1} + 13(3*13) + 25(3%21} + 6{3°} + 6{3°1%} + 6{3°2}. (6.14)
These irreducible representationsi®§12) can now be converted back into the irreducible

representations ofp(24, %), to which they correspond in a one-to-one manner, by the
simple insertion ba 6 and a change tSp (24, i) notation to give

(6(2°1)) + (6(21%)) + (6(2°1)) + (6(321")) + 2(6(32°1%)) + 2(6(32°1%) + (6(32°))
+6(6(32°1%)) + (6(32°1%)) + 4(6(32%)) + 4(6(32*1%)) + 3(6(32%))
+(6(321%)) + (6(3°1%)) + 3(6(3%221)) + 8(6(3%21%)) + 3(6(3%21%))
+12(6(3%2%1)) + 12(6(3%221%)) + 16(6(322°1)) + 8(6(3%1%)) + 8(6(3%1%)
+7(6(3%2)) + 24(6(3°21%)) + 7(6(3%21%)) + 16(6(3%2%)) + 16(6(3°221?))
+9(6(3%2%) + 13(6(3'1)) + 13(6(3*1%)) + 25(6(321)) + 6(6(3°))
+6(6(3°1%)) + 6(6(3°2)). (6.15)

It follows that up to weight 18 and width 3 the required plethysm takes the form

(2(21)) ® {21} = (6(2*1)) + (6(2*1)*) + (6(2°1)) + (6(321%)) + 2(6(32°1%))
+2(6(3221%)*) + (6(32%)) + (6(32%)*) + 6(6(32%1%)) + 4(6(32%))
+4(6(32%*) + 3(6(32%)) + (6(3°1%)) + (6(3°1%)*) + 3(6(3221))
+3(6(3221)*) + 8(6(3%213)) + 12(6(3°221)) + 12(6(3°2°1)*)
+16(6(322%1)) + 8(6(3%12)) + 8(6(3%1%H)*) + 7(6(3°2)) + 7(6(3°2)*)
+24(6(3%21%)) + 16(6(3°2%)) + 16(6(3%2%)*) + 9(6(3°2%)) + 13(6(3*1))
+13(6(3*1)*) + 25(6(3*21)) + 6(6(3°)) + 6(6(3%)*) + 6(6(3°2)) + - - -

(6.16)
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where the terms have now been arranged in mutually associated pairs of irreducible rep-
resentations together with self-associate irreducible representations, so as to illustrate in
accordance with proposition 5.5 the self-associate nature of this particular plethysm.

7. The analogy betweenSp(2n, R) and SO(2n)

In SO (2n) there exists the basic spin representattioa= A, + A_ which is a direct sum
of the two irreducible representations, and A_ whose branchings frol§ O (2n) to U (n)
take the form

Ay — e 2y (12 (7.13)
x=0

A — e 2y 1y (7.1b)
x=0

As we have seen fafp(2n, ) there exists the basic harmonic representafioa A, +A_
which is a direct sum of the two irreps, andA_ whose branchings (2.10) froSp(2n, i)
to U(n) can be written in a form strikingly similar to (7.1):

Ay — e (2x) (7.22)
A_— 81/2§{2x +1). (7.20)
Moving to symmetriz)(ce:d0 squares, f610 (2n) we have [27]
Ar® (2 =[]+ ) 1] (7.32)
AL ®{1%) = 2[1"221‘1 (7.30)
A-®{2)= [;]0_ + [ (7.30)
A-® (1) = Z[l"—:i"] (7.3d)
while for Sp(2n, R) the an;IZ;ous symmetrized squares take the form [14]
Ar®{2) = (10) + ;<1<4+ 4x)) (7.40)
Ay @ {17 =) (1(2+4x) (7.4b)
A_®{2) = i?l(Z + 4x) (7.4c)
A_® (13 =x<=f(1)> + 2}(1(4 + 4x)). (7.4d)

Moving to symmetrized cubes f&rO (2n) it is straightforward to show from previously
published results [27] that we have

11

Ar®1{31 =) (my+0)[A; 1], with m = (100010101110  (7.59)
x=0 y=0
5

Ay @21 =" (my + 0)[A; 1] ) with m = (0010113 (7.50)

x=0 y=0
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11
Ay @ (=" (my+0[A; 1]y with m = (000100110111  (7.5)
x=0 y=0
11
A_®{B =) (my+x0)[A 1], with m = (100010101110  (7.5d)
x=0 y=0
5
AL® 2L =) > (my +)[A; 1], with m = (0010113} (7.5¢)
x=0 y=0
11
AL {13 =) my+0)[Ar 1], with m = (000100110111 (7.5
x=0 y=0

Encouraged by the analogy between (7.1) and (7.2), and that between (7.3) and (7.4), it
seems appropriate to ask if there is a correspondipn, ) analogue of (7.5). The
existence of such an analogue appears to be borne out by recent calculations [17].

As a warm-up exercise we consider the symmetrized squares of the metaplectic
representatiom\. It follows from (2.14) withk = 2 that

A®{p} =) by(1n) (7.6)
A

wherep = (2) or (1%) and A is necessarily constrained to be either (Af) = (0)*, or
(m) = (m)* for m > 1, where* signifies 2-associates so th@t) is self-associate. The
coefficientsbj, are determined by the branching rule (2.16) applie®{@) — S-:

0]—-@ [0"-> @) and ] @+ (7.7)
where these branchings can be obtained by noting from (2.17) that
[m] = (1% @ {m/G} = (1) ® (Im} + (m — 1)) = @*)" + 1" (7.8)

and the fact that1?)" = (2) for n even and(1%)" = (1) for n odd.
It then follows from (2.14) that

A® {2} = (10)) + Y _(1(m)) (7.%)
m=1
A ® (1%} = (10)" + > _(1(m)). (7.%0)
m=1

The problem of evaluating symmetrized cubesArofmay be tackled in the same way.
For this caset = 3 and it is only necessary to consider only #€3) irreps \] = [0],
[1%] = [0]* and n] and [, 1] = [m]* = [m][0]* with m = 1, 2, ... and their branching to
S3. Under the restrictior0 (3) — S3 we have [0]— (0) and [0] = [1%] — (1%), while the
analogue of (7.8) is

[m] - 2D @ {m/G} = 2D @ ({m} + {m — 1})
=) ®{m}+ (2D ® {m — 1}. (7.10)
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However,
1+ x).(3) + 2x.(2) 4 x.(1®) for n = 0+ 6x
x.(3) + (14 2x).(21) + x.(13) for n =1+ 6x
(14 x).3) + (14 2x).(21) + x.(13 for n = 2+ 6x
(2) ® {n} =
1+ x).(3) + (14 2%).(21) + (14 x).(13) for n = 3+ 6x
(14 x).(3) + 2+ 2x).(21) + x.(13) for n = 44 6x
1+ x).3) + (24 2x).(21) + (1 + x).(13) for n = 54 6x
so that
2D ® ({m} + {m — 1}
(1+ 2%).(3) + 4x.(21) + 2x.(13) m = 0+ 6x
(14 2x).(3) + (14 4x).(21) 4 2x.(13) m =1+ 6x
(14 2x).(3) + (24 4x).(2D) + 2x.(13) m =2+ 6x
"l er2o.@reran.enra 200y m=3+6 (71
(24 2x).(3) + (34 4x).(21) + (1 + 2x).(13) m =4+ 6x
(24 2%).(3) + (4 + 4x).(2D) + (1 + 2x).(13) m =5+ 6x.
Hence

e o 3o (o 3D (3D e

Since [0F — (1%) and multiplication by (%) in S3 simply involves conjugation, we have

o (5o o s (o [5)r om

This completes the derivation of th@(3) O S3 branching rules:

0] - (7.141)
0" — (1% (7.1%)

i (o o (o [ (3o e
o (5o (o [s)e (o[s]e e

It then follows from (2.15) and (2.16) that

A®{3} = Z( [5]) 2(m)) +([ D $m))* (7.150)
Roey =3 (n-[5])gm+ (n-[5])go0r 1w
A®{13}— ([ ]) 5 (m)) + ( [3D<§<m>>*. (7.1%)
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However,
ABl=(A, @B+ A (A-®{2)+(A_® 3+ (AL ®{2HA_) (7.169)
A2l = (A, @RI+ AL (A-®{2) + AL (A_®{1%)

+A-® 21+ (AL @ {2DA_ + (AL ® {1PHA.) (7.160)
A(1® = A, 013+ A (A_®{1?)) + (A @ {13} + (A, ® {1?HA.) (7.1&)

where each expression has been separated into the sum of two parts, the first of which
consists of even weight terms and the second of odd weight terms. Moreover,

AyA_@2)= > (3@+2 +4))+(33+2i +4j) (7.17a)
i20,7>0

AvA@1)= Y (G@+2+4))+(3A+2+4))  (7.17)

i0,j>0

AA @)= ) (BA+2+4))+(34+2 +4)) (7.17)

i>0,j>0

ALA_@{1)= > (3@+2+4)) +(3@+2i+4j). (717

i>0,j>0
Since,
. . m+4—a
Y Ba+2i+4)= > [T}(%(m)) (7.18)
i>0,j>0 m>=a,m=a mod 2

it then follows that

- . 2 1
A e@n=Y [%}@(mm 3 [%]@(m»* (7.1%)

meven m odd

. 3

AyA @)= ) [4} 2my+ ) [’“ }< (m))* (7.1%)
meven m odd

A(Ar®{2)= Z[ } 2my+ > [ } $om))* (7.1%)
m odd meven

. 2

Adiomn=Y [’”I ]( m)+ 3 [%}%(m»*. (7.190)
meven m odd

Combining the results (7.16), (7.17) and (7.19) and taking care to distinguish even and odd
weight terms (7.16) we then have

. 2
AreBr=)Y (1+ [%} — [%D(%(m»

meven

+,§d<[ ] [mTHD@(’"))* (7.208)
A_®{3}=n;d(l+|:%:| [ I ]) 20m) +m;mn<[ } [ D( (m))* (7.200)

o T ([

+2
-]
m

4
SSTE N L | PR

m odd
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o= g o [5] [=2] [24)
T2 (o[ B[
oo E{E] [ 0[5 552 o
so=g (5] [ m

meven
modd

m m+ 2 N
+mezven(1+[§]—[—4 ) oy (7.20)
Since
(y +12x) y+12cx+a| Y| _(yta
el e | B 1 vl R
and
(y +12) y4+12x +a y+12x +b
oz - [BrgE - [ - [
_ Y| ytal y+b
oo [3]-[5]-[7]
for 0 < y < 11 these results (7.20) can be rewritten in the form
A, ®{3) = Z Z(my + )3y + 120))" with m = (100010101110  (7.22)
x=0 y=0

11
A_®{3} = Z Z(my +0030+ 12x)) " with m = (000100110111 (7.22%0)
x=0 y=0

11
Ar@ P21 =) "> (my+ 203+ 120))" with m = (001011112122 (7.2%)
x=0 y=0

11
A_®{21) = Z Z(my +20) (3 (y + 120) @™ with m = (00101111212p (7.22)
x=0 y=0

11
Av@ (=D my + 03y +120) with m = (000100110111  (7.22%)
x=0 y=0

ALy =) Z(my + 0 G+ 120)@™ with m = (100010101110 (7.2%)

x=0 y=
where (x)? is to be ignored if; is even and set to beif z is odd.

Clearly, just as (7.4) is analogous to (7.3), so the results (7.22)5@2n, N) are
analogous to the results (7.5) f610(2n). However, the analogy may not be quite what
one might have expected. Fprany partition ofk < 3 the correspondence takes the form

AL @{p} & AL ®{p} (7.23)
A_®{p} & A_®{p'). (7.2%)

To be more precise, all our results support the validity of the following closing conjecture.
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Conjecture 7.1Let p be an arbitrary partition of and lets take values in the s¢t-1, 0, 1}.
For SO(2n) let

Z pf’t[m"/)h/]n(,) for k = 2m even
ALt
A+ ®1{p}= (7.24)
> P A m" /X e for k =2m +1 odd
At
where ifk = 2m andA] = m then: = 0 andz(0) is to be omitted, while otherwise= +1
with n(1) = + andn(—1) = —. Similarly, for Sp(2n, i) let
1 ¢()
ZQf,t<§k(l)> for k = 2m even
~ At
AL ®{p} = (7.25)
1 ¢(@)
ZQf,t<§k(A)> for k = 2m + 1 odd
At

where if (%k(k)) is self-associate so that= 2m andi; = m thent = 0 and¢(0) is to
be omitted, while otherwise = +1 and¢(1) is to be omitted while; (—1) is set to bex.
Then

Py =45, (7.26)

It should be stressed that the non-zero terms of (7.24) are necessarily finite in number
by virtue of the requirement thdw"/1’} be non-vanishing. The same is not true of (7.25)
which, as in (7.4) and (7.20), is expected to always involve an infinite number of terms.

While the corresponding formula foA_ ® {p} is obtained from (7.24) merely by
replacing every surviving)(£1) = + by F, the corresponding formula foh_ ® {p} is
obtained from (7.25) through the use of the conjugacy formula (5.6) of proposition 5.2:

A_®{p}= (AL ®{p'D" (7.27)
This is well illustrated not only by (7.4) but also by (7.20).

8. Concluding remarks

In deriving the results obtained in this paper we have had two objectives in mind. First, to
gain further understanding of the properties of the unitary irreducible representations of the
non-compact group(2n, %) and in particular their Kronecker products and plethysms.
Second, to produce results and techniques aimed at eventual application in symplectic
models of many-particle systems. The first objective has been achieved through an
understanding, and proof, of hitherto conjectured properties of Kronecker products and
plethysms of irreducible representations $f(2n, ). That process has also generated a
number of new identities involving plethysms of infinite seriesdtinctions. Progress with
respect to the second objective has been advanced not only through the derivation of a highly
efficient general formula for the evaluation of arbitrary plethysms, as well as specific results
pertaining to symmetrized squares and cubes, but also through the introduction of associate
irreducible representations ¢fp (21, i) which allow one to compute Kronecker products

and plethysms for particular irreducible representations and then to obtain additional results
for the associate irreducible representations by a simple replacement process, at far less
computational cost than that involved in repeating the entire calculations.
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